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Project Specification Report: PARSE

1. Introduction

Online teaching, technical talks, and remote meetings increasingly rely on slide based presentations
delivered over video conferencing platforms. While these tools make it easy to broadcast content, they
do very little to ensure that participants understand and retain what is being presented. Attendees often
join sessions part way through, miss verbal explanations, or fail to connect earlier slides to later ones.
Existing “Al meeting assistants” mostly operate as transcription tools: they capture audio, generate a
text log, and sometimes produce a generic summary. However, they rarely understand the visual
content of slides such as formulas, charts, diagrams, or code, and therefore cannot answer questions
that depend on slide graphics rather than speech alone. This gap is particularly problematic in visually
dense domains such as engineering, finance, or scientific education, where key information is encoded
in plots, equations, architectural diagrams, and tables. Most current assistants are unable to ground
their answers in such content, because they do not parse layout, do not understand visual objects on
slides, and cannot align these visuals with the presenter’s spoken narrative.

1.1 Description

PARSE is an interactive Al assistant specifically designed to enhance online presentations by bridging
the gap between passive viewing and active understanding. Unlike traditional meeting assistants that
rely solely on audio transcription, PARSE continuously fuses verbal explanations with on-screen
visual materials (text, formulas, tables, and images) to maintain a live, semantic model of the talk.

The system allows participants to ask natural-language questions at any time and receive real-time,
grounded answers with citations linking back to specific slides or timestamps [1]. Following the
session, PARSE generates automated summaries and analytics dashboards, highlighting frequently
asked topics and unresolved queries. Designed with a "privacy-first" approach, the system ensures
session-scoped data retention, meaning all data is permanently deleted upon session termination.

Architecturally, the system is split into:

e A multimodal ML services backend where an orchestration layer manages GPU resources,
loads/unloads models like CLIP, DocLayout-YOLO, and Qwen-VL on demand, and routes
requests to model containers [2][3][4][5].

e A central application backend responsible for user/session management, LiveKit token
generation, API orchestration, and persistence of non-sensitive metadata in PostgreSQL [6].

e A temporary vector store holding session-scoped embeddings for text and image patches.

e A web client for presenters and participants, providing LiveKit-based audio/video, slide
viewing, and an interactive Q&A interface.

1.2 High Level System Architecture & Components
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The proposed solution utilizes a multimodal Al pipeline built on a microservices architecture. The

core components are:

e Communication Infrastructure: LiveKit is used as the backbone for real-time video and
audio streaming, ensuring low-latency data transmission without relying on external bot
integrations or third-party meeting platforms [7].

e Backend Framework: The core application logic is developed using FastAPI (Python),
chosen for its high performance and native support for asynchronous processing required for
real-time Al tasks [6].

e Audio Processing Pipeline:

o Incoming audio streams are processed using Deepgram or OpenAl Whisper for
high-accuracy Speech-to-Text (STT) transcription [8].

e Visual Processing Pipeline:

o DocLayout-YOLO: Utilized for real-time slide analysis, specifically to detect and
patch layout elements (headers, text blocks, formulas, images) [3].

o CLIP (Contrastive Language-Image Pre-training): Employed to create
embeddings for visual frames, acting as a retrieval mechanism to match user queries
with relevant visual context efficiently [4].

e Reasoning & Generation (VLM):

o Qwen-VL: Serves as the primary Vision-Language Model to synthesize the final
answer by reasoning over both the transcribed text and the retrieved visual context
from the slides [5].

e Client Side: A web-based interface for the presenter and attendees to view the presentation

and interact with the Q&A bot.



1.3 Constraints

1.3.1 Implementation Constraints

The implementation of PARSE involves several technical constraints stemming from its real-time,
multimodal design. The system must process audio, video, and visual slide information with minimal
latency to ensure a smooth user experience during live presentations. Heavy models such as
Qwen-VL, CLIP, and DocLayout-YOLO introduce significant computational overhead, making
inference optimization a critical requirement.

Communication Infrastructure:

PARSE relies on LiveKit as the backbone for real-time audiovisual streaming. Unlike platforms that
depend on external meeting software (e.g., Zoom bots), PARSE must directly handle WebRTC media
streams, including encoding, decoding, packet loss management, and synchronization. This
introduces additional complexity compared to simple REST-based model interactions [7].

Backend Framework:

The backend is built using FastAPI, selected for its high throughput and asynchronous capabilities.
FastAPI enables non-blocking processing of concurrent audio and video frames, which is essential for
real-time Al inference workloads [6].

Audio Processing Pipeline:

Incoming audio is transcribed using Deepgram or OpenAl Whisper, chosen for their robustness to
accents, noise, and domain-specific language. These systems must operate continuously under tight
latency constraints to ensure that speech-to-text outputs are available to the reasoning module on time

[8].
Visual Processing Pipeline:

e DocLayout-YOLO is used to detect slide components titles, paragraphs, formulas, images
enabling structured visual understanding [3].

e CLIP embeddings are generated for each captured frame so that user queries can be matched
against visually relevant context efficiently. These embeddings must be generated and
indexed in near real-time [4].

e Reasoning and Generation (VLM): The Qwen-VL model is employed as the core reasoning
engine. It synthesizes responses using both user question, transcribed speech and visual
embeddings, producing grounded, context-aware answers. Running a vision-language model
at interactive speeds constrains the choice of model size and necessitates GPU-level
optimization [5].

Client Interface:

A lightweight browser-based interface serves both presenters and attendees. The client must maintain
live WebRTC streams, display slides, and support interactive Q&A while remaining responsive under
unstable network conditions.

Additional Implementation Tools:



e Python is the primary development language for machine learning pipelines and inference
integration.

e Git and GitHub support version control and collaborative development.

These requirements collectively restrict architectural freedom and necessitate systematic engineering
decisions to maintain both performance and reliability.

1.3.2 Economic Constraints

PARSE is developed as a university capstone project, meaning the financial budget is strictly limited
and must rely entirely on the team’s own resources, without external sponsors or institutional funding.
Consequently, all model choices, hosting decisions, and compute configurations emphasize cost
efficiency. To minimize licensing and recurring costs, the system exclusively uses open-source models
such as Qwen-VL, DocLayout-YOLO, Whisper, CLIP, and PyTorch-based pipelines. This eliminates
dependency on costly proprietary APIs. However, the reliance on GPU-intensive models introduces
constraints related to cloud compute costs. Running inference on cloud GPUs (e.g., Nvidia A10, L4,
or T4 instances) requires careful scheduling, batching, and usage minimization. The architecture must
therefore maximize inference efficiency to remain within the student budget.

1.3.3 Ethical Constraints

PARSE processes highly sensitive multimodal data—including users’ voices, faces, presentation
slides, and potentially confidential corporate content. Therefore, the system enforces strict ethical
constraints centered on privacy, consent, and responsible data handling.

e Consent:

Users must explicitly provide informed consent before audio or video streams are processed.

The system’s onboarding flow clearly explains what data is processed and how it is used.
e Session-Scoped Retention:

PARSE follows a zero persistent storage policy. All audio, video, transcriptions, visual
embeddings, and generated answers are processed ephemerally and discarded at the end of
the session. No identifiable data is saved, logged, or transmitted to third parties.

e Privacy Protections:

User data is never used to train models, improve system performance, or build datasets. All
processing occurs only for the duration of the live session, and the system is architected to
avoid accidental retention or leakage.

These ethical constraints shape the software architecture, model selection, database policies, and legal
compliance mechanisms.

1.4 Professional and Ethical Issues

The development of PARSE adheres strictly to the Ethics and Professional Conduct, ensuring
responsible engineering practices throughout the lifecycle of the project. The system is designed with
an explicit commitment to transparency, accuracy, and confidentiality.



Transparency:

Users are informed clearly and proactively that they are engaging with an Al system. The
interface states that PARSE processes audiovisual data in real time and provides Al-generated
answers based on that input. No misleading or hidden automation is used.

Accuracy and Grounding:

To minimize hallucinations, one of the primary risks of large language models, the system
enforces a grounding strategy where answers cite visual or verbal evidence extracted from the
user’s slides or spoken content [2]. This ensures that responses remain faithful to the
presentation material rather than speculative or fabricated.

Confidentiality and Security:

The system is designed to prevent data leaks and protect sensitive information. Because
PARSE operates entirely within the session window, no user content is stored, cached,
exported, or used for training. By deleting all multimodal data once the session ends, the
system eliminates long-term risks associated with data misuse, unauthorized access, or
privacy violations.

PARSE incorporates secure communication protocols, encrypted transmission channels, and strict
access controls to ensure that no unauthorized party can intercept or observe the audiovisual streams.

Protecting user data is treated as a professional and ethical obligation; the system prioritizes privacy
and confidentiality even at the cost of additional development complexity and reduced system
analytics.

Overall, PARSE’s design reflects a principled commitment to user safety, responsible Al usage, and

ethical computational practices.

1.5 Standards

IEEE 830-1998: Recommended Practice for Software Requirements Specifications [9].
UML 2.5.1: Used for system modeling (Sequence and Component diagrams) [10].
RESTful API Standards: For communication between the Frontend and FastAPI backend.
WebRTC: Standard for real-time communication via LiveKit [11].

2. Design Requirements

2.1 Functional Requirements

The functional requirements are categorized into four core modules: Session Management,

Multimodal Ingestion, Query Processing, and Post-Session Analysis.

2.1.1 Session Management & Connectivity

FR-01: The system shall utilize LiveKit to establish a secure, low-latency WebRTC
connection for both audio and video tracks.

FR-02: The system shall support a "host" mode to initiate sessions and a "participant" mode
to join via a unique room token.

FR-03: The system shall detect active presentation slides versus webcam feeds to prioritize
high-resolution processing for slides.



2.1.2 Multimodal Data Ingestion & Processing

FR-04 (Audio Pipeline): The system shall stream audio buffers to Deepgram/Whisper APIs
for real-time Speech-to-Text (STT) conversion.

FR-05 (Visual Pipeline): The system shall sample video frames at a configurable rate (e.g.,
0.5 FPS) to minimize redundant processing while capturing slide transitions.

FR-06 (Layout Analysis): The system shall apply DocLayout-YOLO to extracted frames to
identify and segment text blocks, headers, figures, and tables.

FR-07 (Embedding Generation): The system shall generate vector embeddings for both
transcribed text and visual segments using CLIP to enable semantic search.

2.1.3 Interactive Q&A & Reasoning

FR-08: The system shall provide a chat interface allowing users to submit natural language
queries during the live session.

FR-09 (Retrieval): Upon receiving a query, the system shall retrieve the top-k most relevant
audio transcripts and visual frames from the session history.

FR-10 (Generation): The system shall pass the retrieved context and user query to the
Qwen-VL model to generate a context-aware answer.

FR-11 (Grounded Citations): Every generated answer must include a citation, explicitly
linking to the specific timestamp of the audio or the slide number where the information was
presented.

2.1.4 Post-Session Operations

FR-12: The system shall generate a concise textual summary of the presentation immediately
after the session ends.

FR-13 (Data Purging): The system shall execute a hard-delete operation on all temporary
vector stores and media files upon session termination to ensure privacy ("Session-Scoped
Retention").

2.2 Non-Functional Requirements

These requirements define the quality attributes, performance constraints, and operating standards of
the PARSE system.

2.2.1 Performance & Latency

NFR-01 (End-to-End Latency): The total time from a user submitting a question to
receiving an answer shall not exceed 10 seconds under normal network conditions.

NFR-02 (Transcription Lag): The delay between spoken words and the availability of their
text transcript (STT latency) shall be less than 5 seconds.

NFR-03 (Frame Processing): The visual processing pipeline (YOLO + CLIP) must process a
slide frame within 3 second to ensure the bot's knowledge base is current.

2.2.2 Scalability & Concurrency

NFR-04: The backend architecture (FastAPI) shall be stateless to allow for horizontal scaling
via container orchestration (e.g., Docker Swarm or Kubernetes) if resources permit.



NFR-05: The system shall support at least 50 concurrent users in a single LiveKit room
without degradation in audio/video quality.

2.2.3 Reliability & Availability

NFR-06 (Reconnection): In the event of a client-side network drop, the system shall
automatically attempt to reconnect to the LiveKit room for up to 30 seconds before timing
out.

NFR-07 (Fallback): If the visual analysis model (Qwen-VL) fails or times out, the system
shall gracefully degrade to answer based solely on the textual transcript, notifying the user of
the limitation.

2.2.4 Security & Privacy

NFR-08 (Encryption): All media streams transmitted via LiveKit must be encrypted using
DTLS/SRTP (Datagram Transport Layer Security / Secure Real-time Transport Protocol).

NFR-09 (Volatile Storage): The system shall use in-memory databases (e.g., Redis or
temporary vector indices) for session data to prevent accidental long-term persistence on disk.

2.2.5 Usability

NFR-10: The user interface shall be responsive and accessible via standard modern web
browsers (Chrome, Firefox, Edge) without requiring additional software installation.

NFR-11: The Q&A panel must not obscure more than 20% of the presentation screen area on
desktop devices.

3. Feasibility Discussions

This section evaluates PARSE from two perspectives:

(1) Market & competitive feasibility, which assesses how the system fits into the current
technological landscape, and

(2) Academic feasibility, which examines its technical soundness, research alignment, and
practicality within a university project.

3.1 Market & Competitive Analysis

3.1.1 Overview of Existing Solutions

The current market for meeting and presentation assistants is dominated by products such as Otter.ai,
Microsoft Copilot, Google Duet, and Zoom AI Companion. These solutions primarily offer:

Speech-to-text transcription

Meeting summaries



e Keyword extraction

e (Chat-based Q&A derived from text logs

While effective for note-taking and basic meeting automation, these systems share a critical
limitation: they operate almost entirely on audio-only understanding. Their Q&A capabilities rely
on transcripts and cannot interpret the visual content on presentation slides—formulas, diagrams,
charts, code snippets, tables, or layout structure.

As modern presentations, especially in academic and technical fields, heavily depend on visual
information, this creates a substantial unmet need in the market.

3.1.2 Identified Market Gap

In domains such as engineering, machine learning, finance, and science education, participants often
ask questions directly about the visual content on slides:

e “What does this graph imply?”
e “Can you explain the equation on the slide?”

e “What is the meaning of this architecture diagram?”

Traditional assistants cannot answer these questions because they:

1. Do not parse slide layouts,
2. Do not understand visual objects,

3. Cannot relate visuals with spoken explanations.

This makes them unsuitable for visually rich presentations and technical lectures.

3.1.3 PARSE’s Competitive Advantage

PARSE differentiates itself through multimodal comprehension, achieved by integrating:

e DocLayout-YOLO for detecting text blocks, titles, formulas, and figures.
e CLIP embeddings for cross-modal semantic retrieval.

e (Qwen-VL, a state-of-the-art vision-language model capable of interpreting images, reading
text, and answering questions grounded in visuals.

This enables PARSE to:



Understand slide content frame-by-frame,

Match user queries to relevant slide regions,

e Combine transcript information with extracted visual elements,

Provide grounded answers with citations to specific timestamps or slide numbers.

No mainstream commercial tool currently provides this combination of real-time multimodal
retrieval + grounded reasoning.

3.1.4 Target Market and Use Cases

PARSE naturally fits several domains where slide content is critical:

e Online Education: university lectures, MOOCs, recorded lessons
e Technical Webinars: machine learning, cybersecurity, engineering workshops
e Corporate Training Sessions: process explanations, internal workshops

e Research Conferences: presentations with heavy diagrams and equations
These audiences often request real-time clarifications about visual material; PARSE directly addresses
this pain point.

3.1.5 Cost and Deployment Feasibility
Because PARSE uses open-source models (Qwen-VL, Whisper, DocLayout-YOLO, CLIP), the

system avoids the recurring API costs associated with proprietary Al services. This aligns with the
economic constraints of a student capstone project.

Computational requirements can be managed through:

o GPU-efficient model sizes
e Reduced frame sampling rates (e.g., 0.5 FPS for slides)
e Batch processing when possible

e Temporary in-memory data for session-scoped retention

This makes the project financially feasible using low-cost GPU instances or a single
university-provided GPU workstation.



3.1.6 Market Feasibility Conclusion

Given the limited capabilities of existing meeting assistants and the strong demand for tools that
understand both spoken content and slides, PARSE provides a unique and competitive solution. Its
reliance on open-source technologies further strengthens feasibility within the capstone budget. The
market feasibility is therefore high, with a clear niche that is currently underserved.

3.2 Academic Analysis

3.2.1 Alignment with Modern AI Research

PARSE aligns closely with several active research areas in artificial intelligence:

Vision-Language Models (VLMs)

Document Layout Understanding

Multimodal Retrieval-Augmented Generation (RAG)
Real-time inference and streaming ML

Cross-modal semantic alignment using CLIP embeddings

These topics appear frequently in recent ML conferences (CVPR, NeurIPS, ACL, ICCV), indicating
that PARSE sits at the intersection of modern academic interest and applied engineering.

3.2.2 Technical Soundness

The system architecture is built around components that are extensively documented and validated in

literature:

Qwen-VL is recognized for strong OCR, chart reading, and multimodal reasoning.

Whisper / Deepgram are industry-standard STT systems capable of handling noise, accents,
and technical vocabulary.

CLIP provides a unified embedding space for text and images, enabling efficient retrieval.

DocLayout-YOLO is optimized for detecting structured elements within document-like
layouts.

FastAPI supports high-performance asynchronous data handling.



e LiveKit abstracts complex WebRTC operations like ICE negotiation, RTP streams, and
synchronization.

This means that each subsystem is supported by mature academic or industrial work, reducing
research risk and implementation uncertainty.

3.2.3 Engineering Feasibility
Though ambitious, the system is engineered with manageable complexity due to modularity:

1. Audio Pipeline

— Whisper/Deepgram provide deterministic <5s latency, satisfying the non-functional latency
requirements.

2. Visual Pipeline

— Frames are captured at a low sampling rate (e.g., 0.5 FPS), ensuring DocLayout-YOLO and
CLIP can run efficiently.

3. Retrieval and Reasoning Pipeline
— Embeddings are indexed in memory, making lookup operations highly efficient [8].

— Qwen-VL inference remains feasible with GPU-level optimization (FP16, model caching)

[5].
4. Real-time Communication

— LiveKit simplifies real-time media handling, eliminating the need to implement custom
WebRTC logic.

5. Privacy and Data Management

— Session-scoped retention is entirely feasible using Redis or in-memory vector stores.

Collectively, these components make the project’s real-time requirements achievable within capstone
constraints.

3.2.4 Academic Contribution

PARSE contributes academically in several ways:

e Demonstrates a working integration of multimodal RAG for real-time scenarios.



e Shows how VLMs can be grounded using timestamp-based and slide-based citations.
e Explores the use of layout detection to improve Al reasoning over slides.

e Provides a full end-to-end system that merges WebRTC, ML pipelines, and retrieval systems.

Such an implementation is uncommon in student projects and represents a meaningful academic
contribution.

3.2.5 Academic Feasibility Conclusion

The system leverages modern, open-source Al research while remaining within manageable
computational and implementation constraints. All core components are technically sound,
well-documented, and compatible with real-time requirements. PARSE is therefore academically
feasible, with strong potential for both practical impact and contribution to the field of multimodal Al
systems.

5. Glossary

STT (Speech-to-Text): Technology that converts spoken language into written text.
VLM (Vision-Language Model): Al models designed to understand and generate content
based on both visual and textual inputs (e.g., Qwen-VL).

e RAG (Retrieval-Augmented Generation): A technique to optimize LLM output by
referencing an authoritative knowledge base outside its training data.
Latency: The delay before a transfer of data begins following an instruction for its transfer.
LiveKit: An open-source infrastructure for building real-time audio and video applications.
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